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Electromagnetic shocks on the optical cycle of ultrashort pulses in triple-resonance Lorentz
dielectric media with subfemtosecond nonlinear electronic Debye relaxation
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The dynamical evolution of an intense ultrashort sub-10-fs two-cycle optical pulse is considered as it
propagates through a transparent third-order dielectric medium characterized by three resonance lines and a
finite sub-fs relaxation time of the electronic nonlinearity. Numerical integration of the full Maxwell's equa-
tions incorporating triple-resonance Lorentz linear dispersion and Debye nonlinear dispersion, for a linearly
polarized electromagnetic pulse centered @t 1.24um in the normal dispersion region near the zero dis-
persion wavelength, shows the formationsbfocks occurring on the optical cycthie to the generation of
optical harmonics. The finite relaxation time of the nonlinear electronic resgsnbes time scale(i) slows
down the steepening rate of the optical cydi€) does not limit the generation of strongly phase matched
optical harmonics, and consequently the development of infinitely sharp edges on the optical cycle producing
its breaking when linear dispersion is not includéd; reduces the production of phase matched harmonics
and consequently the sharpening of the jumps when dispersion is present, compared to the case of an instan-
taneous nonlinear response; diwd reduces the harmonic spectrum spreading and modulation at later times on
the appearance of self-steepening of the electric field envel81€63-651X99)13107-6

PACS numbds): 42.65.Ky

I. INTRODUCTION Recently, the concept of decomposing the wave packet

Advances in ultrashort pulse laser technology have madinto a carrier wave and an envelope has been shown to be
P 9y Pgitimate down to the single-cycldull width at intensity

possible th_e genera@ion of light pulse_s carrying a substanti alf maximum,(FWHM)] regime and a fundamental three-
part of their energy in only a few optical cycles,2]. Elec-  giansional(3D) envelope propagation equation based on
trgmagnetlc energy compressed_m brief time intervals pergis framework has been derived by Brabec and KrdB#2)
mits one to achieve extremely high peak powers. Cohererg) |, this framework, not only the envelope phase but also
light pulses with multiterrawatt peak power of energy at theine carrier phasemust not vary significantly as the pulse
joule level are now available, opening new exciting opportu-covers a distance equal to the carrier wavelerigie so
nities in the research of high field nonlinear phenomenagg|led slowly evolving wave approximatignOn the other
They may be used in time-resolved spectroscopic techniquasand, it does not impose a limitation on the pulse width. In
to study transient chemical processes on the fs time scaléhe specific case of 1D propagatigine., when diffraction
e.g., dissociation, or for quantum control of chemical bond-may be discardedthe BK equation reduces to a generalized
ing [3]. Ultrashort pulses could also find wide applications innonlinear Schrdinger equation derived by Blow and Wood

imaging, medical IR tomograpHwt]. [6], which may be written as
|
i Ay 1e O Aft @ A 2dt;|=0 1
I 1B NI+ oo ot X (t—ty)|A(X,ty)[*dt; | =0, (1)

where the linear propagation operatodescribing the linear With

losses and higher-order dispersion effects is given b
g P g y Bm=Re(d"kld0™),, , an=21Im(d"k/Id0™),, ()

. g a1 9 Bt (i2ap( \" and
L= +m§_)2—m! <l @
_ Nawo

Y=o (4)
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1063-651X/99/6(1)/1051(9)/$15.00 PRE 60 1051 ©1999 The American Physical Society



1052 L. GILLES, J. V. MOLONEY, AND L. VAZQUEZ PRE 60

cesses, i.e., population transfer between energy lewels  multiple-resonance Lorentz transparent medium, and to ana-
#0. The operatof1+ (i/wg) (d/dt)] in Eq. (1) gives rise to  lyze the influence of the delayed sub-fs nonlinear electronic
the envelopeshock (self-steepening a nonlinear higher- response on the generation of optical harmonics and there-
order effect resulting from the intensity dependence of thdore on the shocks occurring on the optical cycle. Although
group velocity, while the memory integral describes the deihe response of nonlinearities in electronic polarization is
layed intensity response. Two different types of physicalvery rapid, relaxation_ s_hould be taken into account for ul-
mechanisms contribute to the nonlinear third-order electridrashort pulses containing only a few cycles. Shocks on the
susceptibility far from resonance and contribute additively to®Ptical cycle cannot easily be developed in real media be-
¥® [7]. An electronic contribution, nearly instantanedas ~ c3US€ of group velocity dispersio@VD). Phase velocity
~0.1-0.5fs, where is the relaxation timparising from the mismatch leads to the separation of the optical harmonics

electronic response to the applied electric field against thérom the main pulse traveling at a different group velocity,

heavy nuclei considered fixed at an average position. Th nd hen_ce I_imits the steeper_ling on the optical cycle_. Inte.r-
second, nuclear contributiofRaman self-scatteringarises erometric fringe autocorrelation techniques may provide di-

from the electric field induced changes in the internal nucleafect measurement of the op.tlcal cy(ﬁIHB]_, and thus carrier :
vibrations on a much longer time scale 100 fg, and are shock formation. Good candidate materials to observe carrier

usually temperature dependent shocks should have a large nonlinear index of refractipn

Raman self-scattering produces in the context of opticafJlnd a broad spectra! region of small dlspersmn _where the
solitons a continuous downshiftedshify of the soliton car- phase to group verllocnyp;]vg IS cflosedtolﬁnlty. Fﬁosr gl_ustra-
rier frequency, a phenomenon know as soliton self-frequencgye purposes we have chosen fused siiica 6B > dISper-
shift [8], and consequently, in the anomalous dispersion re>'Ve ”0”'”_‘66“ d|.electr|c materlal QUe to its con5|derable Im-
gime, a continuous deceleration of the pulse. Since its exPortance in optical communications and good dispersion
perimental discovery[9], numerical and experimental Properties around the zero dispersion poighp=1.27um.

[10,17 investigations of higher-order nonlinear effects re_MaxweII’s equations were sol_ved.for the evolution of an ini—
sulting from the finite response time of the Raman nonlin-t'al hyperbolic secant electric field envelope of duration
qual tor,=8.8fs (FWHM) (time constant,=7,/[2 In(1

earity have been carried out extensively because of their furk : : i
damental as well as technological importance. +v2)]=5fs), and a peak intensity equal to the estimated

In this paper, numerical integration of the full Maxwell's Silica damage threshold intensity in the sub-10-fs regigie
equations for linearly polarized fields in one space dimensior- °0 TWicnt. Fused silica is characterized by three absorp-
using the finite-difference time-domaitFDTD) method t|o_n bandgtwo bands in the vacuum UV and one band in the
[12,13 is performed to investigate the effects of thimite ~ Middle IR and a nonlinear index change at the peak of the
nonlinear sub-fs electronic relaxatioon the formation and Puls€8n=nalo~1.5%. The index of refraction is given by
dynamical evolution oshocks on the optical cyclsf a sub- N=No+ N, andén/ny~1% can be obtained. Far from these
10-fs pulse containing only two oscillation cyclé8WHM) three resonances, bu_lk fused_smca is W§|| approximated by
traveling in the normal dispersion region of the host materialthe Sellmeier dispersion relati¢d9] covering both normal
These electromagnetic shocks in the optical range occur du@'d anomalous dispersion regimes. At the pulse center
to the generation of optical harmonics, the tifdéstancg of ~ vacuum wavelengti\g=1.24um (a spectral FWHM of
shock formation being directly related to the third harmonicAN~200nM  (wo=1520THz and Aw~224TH2, the
period (wavelength in the instantaneous nonlinear responseSecond-ordefGVD) is only ko= 2.83 ps/km.
limit. To minimize the effects of dispersion, known to play a

The p055|b|||ty of Obser\/ing Se|f-5teepening of Optica| crucial role in shock formation, Ieading to shock dissipation
pulses and the formation of shocks on #evelopehas been [1], carrier shock wave is best evidenced close to the zero
extensively discussdd]. Raman-induced optical shocks and dispersion wavelength, where the phase and group velocity
kink solitons representing shock fronts propagating undismismatch is minimum. At the pulse center waveleny
torded inside optical fibers have also been predi¢ied in ~ =1.24um, the phase-group velocity ratiq,/v,~1. In this
both the anomalous and normal dispersion regimes, althouggmall dispersion limit, part of the third-harmonic pulse gen-
they are unstable because of the inherent modulation inst&rated by the Kerr nonlinearity copropagates with the funda-
bility of the cw background. Stable dark shock waves inmental and is thus phase matched. For the chosen pulse pa-
dissipative Schidinger systems have also been demon+ameters the dispersion lengtff)= rﬁ,/kg~2.7 cm, which is
strated[15]. much greater than the nonlinear length sdajg =1/(vyl,)

In contrast with the former envelope shock phenomenas=c/(wgn,lg)=Ng/(27N5l ) ~10.60y~8.7cty, and hence
the formation of shocks occurring on the optical carrier waveshocks on the optical cycle can occur over propagation dis-
has received little attention. Electromagnetic shdckscon- tances of a few micrometers.
tinuity of the electric and magnetic fiel[dand shock wave
trains of intense linearly polarized radiation were conjectured Il. MODEL SYSTEM
theoretically in 1965 by Rosefl6] who emphasized the , . . L
rigorous correspondence between the theory of electromag- Ma_x_well S equations for the el_ectr_|c ano_l magnetic f'.eld
netic shocks and that of large amplitude 1D pressure wave uantitiesE andH in a nonmagnetic dielectric medium with
in solids. Recently, the authors of RgL7] discussed carrier no free charges are
shocking for a single-resonance Lorentz medium with instan- VX E=— puodH/dt,
taneous nonlinear response. The aim of this paper is to gen-
eralize their analysis to the more physically realistic case of a V XH=gD/ét. (5)
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The material linear and nonlinear responses are includedhereH=H,, E=E,, D=D,. Decomposed into envelope
through the constitutive relatioD=e,[E+®'*], where and carrier waves, the electromagnetic fields take the form
=P+ dB), is the total induced electric macroscopic

polarization, consisting of linear and nonlinear parts. The E(x,1) Eoq(x,1)
triple-resonance Lorentz oscillator is represented by the con- | H(X,t) | = =| Hoh(X,t) |ex{i (kox— wot) ]+ C.c.
volution integral D(x,t) Dod(x,t)
(10)
3 t
oV(t)= (I)}D(t):j ¥ P(t—ty)E(t,)dt;, (6) Interms of the temporal Fourier transform,
=1 o
1 (= . _
with the linear susceptibility given by E(t)= > f, E(w)expliot)dw,
3 (11
xV(=2 X, E(w)=J E(t)exp(—i wt)d,
, @)
Bjoj . the medium polarizations are written as
V()= " exe— ysin Q00 1), P
J ()= 1 (w)E(w),
wherer=\/wj2_— yjz. Here w; i_s the undamped resonance )
frequency of thgth resonance ling =1, 2, and 3, g; is the Y-S Bjo]
strength of the resonance, f':ujgi is the phenomenplogice}l X _J=l ij_w —2iyj0’
damping constant. For simplicity, a centrosymmetric and iso-
tropic material has been assumed, so that the different sus- R o R
ceptibility tensors are scalar quantities, i.g/"=x{? q’(s)(w):af_ Q(w— wg)E(wp)dwy,
=Y. Relaxation of the nonlinear response of the medium
is taken into account phenomenologically through a Debye R w
model Q(w—wo):j(<3>(w—wo)f E(Q+ w—w)
®3)(t)=aQ(t)E(t), .
(H=aQ(E() -E*(Q— 0+ wp)dQ, (12
t
t)= G)(t—ty)||E(ty)]]?dty, 1-i(w—wg)T
o= [ x-tllEtlFay O "

1+(w—w0)272'

(tS)
1 In the time domain, Eq99) are equivalently ex di
@(ty=— _ ; : y expressed in
X7 Texp( Ur), the form of a wave equation
92 92 72
© o 27 7 _
f_ CIdt=1, T2E—C B+ Sy d=0. (14)

In Fourier space, neglecting the third harmoniestating

wherea is the third-order nonlinear coupling constant. Wewave approximatiop the following wave equation for the

3)=,03) —,03)
have also assumed tha(l‘ )_nyyy;X,ZZZ_z’ and that the g5y varying envelopéj(x,»— w,) can be derived:
second-order susceptibility tensq® is identically zero
[20]. As a consequence of isotropy, the electric induction P w?
field D and the electric fielE are parallel. The third-order S d@— oo+ e(w) Zh(0—w)=0, (15

nonlinear polarization reduces to the instantaneous intensity-
dependent Kerr response in the limit of infinitely fast re-\where the dielectric function
sponse ¢—0).

We restrict our attention to electromagnetic plane waves e(w)=1+ ¥ (w)+2¥®(0—wyaEql?.  (16)
linearly polarized propagating along thexis, in which case
Maxwell's equationg5) are The dispersion relation takes the form
1 9 e(w)w?/c?=K>2. a7
= H=— —E,
d Mo IX Its real and imaginary parts are related to the refractive index
5 5 n(w) and the absorption loss coefficieatw) through the
ho? relationship
ot D ax H, ©
. c |?




1054 L. GILLES, J. V. MOLONEY, AND L. VAZQUEZ PRE 60

Therefore, This last nonlinear hyperbolic equation can be solved ana-
lytically by the method of the characteristics and admits
n(w)=no(w)+n,E3q|?, shock solution$22]. First, note that EqY25) satisfy the 1D
(199  conservation laws
a(w)= ag(w) + a0~ wo) Eglql?,

dp(E) OE
where the linear and nonlinear induced refractive indices are at a_x: )
given by
No(w)=Re V1+ 5 P(w)], p(E)=f o(E)dE, (26)

(20

2(3)
N _Sax”(0) _ 3a subject to the initial data
2 8ng(wg)  8ng’

while the single- and two-photon absorption coefficients are Ex=00=1(1) @7

(throughout this paper we use the expression “initially” in

ag(w)= ®o Im[xY(w)], this sense, i.e., the condition xt0). Recognizing that the
No(wo)C 21 differentiation in Eqs(25) may be written as
wo ~
s 05) = o MR (0 0] 222,20 28)

The ftriple-resonance Lorentz linear dipole OSCIIIatorSWhich is a directional derivative along the characteristic

obey a set of three coupled harmonic ordinary differentialcurvesc given by integrating

equationg ODE’s),
dt
32 9 C:—=0(E 29

and the Debye electronic relaxation satisfies the followingWhiCh enables Eq€25) to be written

DE:
© dE

ﬁzo along the characteristic§. (30

J 1 1
9+ -9 ;EZ. (23
Thus characteristics transport along them constant values of
The ODE’s (22) and (23) are coupled simultaneously to the solutionE and they are nonparallel straight lings(E)
Maxwell’s partial differential equation€®DE’s) (9), and the ~ #consi of slope given by Eq(29). It follows that different
full system is solved using a standard FDTD scheme base@leéments of the initial wav€27) will propagate at different
on the Yee metho@13]. The numerical dispersion inherent SPeeds, so that the wave will reshape with propagation dis-

in these methods has been analyzed in dégd], and we tancex. Wheno'(E)>0, higher values oE propagate faster
chose our discretization according|y_ than lower ones, while When’(E)<0 hlgher values ot

propagate slower and the nonlinear distortion occurs toward
the trailing side of the wave. Far'(E)=0 (i.e., the linear

case, o is a constant, characteristics are parallel straight
lines, and the wave is translated without any change in

Before considering the numerical solution of the set ofshape. Nonuniqueness of the solution results wherx o0

equationg9), (22), and(23), it is instructive to consider the the characteristics intersect. At some distance a discontinuity
dispersionless case by settif§’)=0 and the instantaneous or shock forms due to the crossing of two characteristics.
nonlinear response limit— 0. Equation(14) then becomes This crossing distance is found as follows. Consider two

characteristicg; andC,, through the point§x=0, t=t,)
PE  _PPE  ES < : -
2 -0 (24) and(x=0, t=t,), respectively. They have the equations

Ill. SHOCKS ON THE OPTICAL CYCLE
OF ULTRASHORT PULSES

In close connection to Eq24) are the one-way wave equa- Gut=tatFtx, (31)
tions ~ ~
Coit=1,+F(ty)x,

JE JE
o(B) 5r+ox =0 where F(t)=o(f(1)). The characteristics that cross first
(255  must be initially adjacent so that we can take the limjt

o(E)=—(1/c)y1+3aE?. —1, to obtain
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F'(Tg)

xg=lim (32

o1, F(L) —-F(d)

Therefore, the smallest breaking distance occurs on the chal

acteristic passing through the poit=0, tg) for which
F'(tg) is most negative. The solution of Eq&5) can then
be written in implicit form(for the boundary condition of an
input pulse varying in time at=0) by the set of equations

E(x,t)=f(x=00),

~ ~ (33
t=t—o(E(x=0)),
or, equivalently,
E(x,H)=f(t—a(E)x)=1(1). (39
Differentiating Eq.(34) yields
Eo=rmio 1O
a OO e X
(35
E . ~ ot —f'(OF(
% = L= TR0
28 X  1+F'(t)x

Clearly, these derivatives become infinite at the shock Ioca-

tion, i.e., whenF' achieves its most negative value.

As iIIustrative example, we have chosen an initial hyper-

bolic secant soliton pulse
E(x=0})=E, seclhit/ty)coq wqt). (36)

Inserting this initial condition into Eq(32) yields

21+ (3/2)aE; sech[Ty/(8to)]

X~ (1) S S SecR[To/(8to) 13{tanil To/(8to) 1 + woto}
(37
21+ (3/2)aE3
:(Cto) B Osto)
cTo
- w3aE;’

The shock distance is thus directly related to the frequency

ELECTROMAGNETIC SHOCKS ON THE OPTICAL CYCE.. ..

150 10.16
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N8 8w
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s E]
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FIG. 1. Bulk fused silica chromatic dispersion. The material
parameters arg8;~0.7, A{~0.068um, T,=\,/c~0.22fs, B,
04 )\2 0116/Lm T2—)\2/C 039f$ ﬁ3 09 )\3 gg,le
and T3=A3/c~33fs, where)\ =2mcl/w;. We have chosen long
resonance relaxation tlmqq =5 us. The top picture shows the
group velocity together with the ratio phase-group velocity. Bottom
picture displays group velocity dispersié®VD) and third order
dispersion(TOD). On both pictures we have superimposed the ini-
tial pulse spectrum for comparison.

Denotings= y/ wg=n,/c andA=Eyq expi ¢(x,t)), we ob-
tain the following nonlinear hyperbolic equation for the real
amplitudeq in the group velocity frame of reference:

dq

aq
-1 2 27 _
— T 3sESa’—==0. (39)

For g(x=0,t) =sech{/ty), we obtain the envelope shocking

distance

0. 43:t0
sn  3a

8ng

0.43t
env_ 0 = 0.4%t,,

B n,E}

(40)

of the third-harmonic generated by the nonlinearity. In the

present cas@E3=0.06 (which corresponds tén=1.5%),
75/ To=2 (two-cycle initial pulsg, yielding xg~1.5%t,.

which is proportional to the pulse duratiqexpressed in
units of cty). For the initial condition(36), the ratio of the

For physical reasons the electromagnetic fields must benvelope-to-carrier shocking distance is given by

single valued, therefore when breaking occurs E2{s. must

cease to be a valid description of the electromagnetic shocks. Xg" p
In fact, beforexg the pulse bandwidth will have become
large enough that dispersion can no longer be neglected.

To calculate the steepening of the putgerelopeEqg. (1)

can be used in the dispersionless and instantaneous nonlingard we obtainxg"~28.6cty (xg'/xg~18.7).

response limits, i.e.,

_OA

dA

o (39

1+ ——) |A|2A=0.

X—"‘27Tno (41)

B To)'
where 7, is the envelope FWHM. In our casén=0.015,
Figure 1
shows typical theoretlcal material chromatic dispersion ob-
tained from the Sellmeier relatiofl2) valid far from the
resonances. For bulk fused silica the parameters are found to
be [19] ﬁ1~0.7, )\1~0068/.Lm, Tl:}\1/C~0.22fS,
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(w1/w0~18.2), B2~0.4, )\2"‘0116,U,m, T2=)\2/C
~0.39fs, (@y/wg~10.7), B3~0.9, N3~9.9um, Tj
=Nz/c~33fs, and (3/we~0.12), where\j=2wCl/w;.

We have chosen long resonance relaxation tinﬁsl
=5us [yjtozlofg]. The three absorption bands of $iO
are[ wj,wjy1+ B;]. The zero dispersion poiitat the inflec-
tion point in the index of refraction\ ;pp~1.27um lies be-
tween A, and \3/{1+ B3. At the carrier vacuum wave-
length\o=1.24um GVD is only k®~2.83 pgkm. In Fig.

2, the spectrum of the electronic nonlinear susceptibility is
displayed together with the initial pulse spectrum. We note
the strong nonlinear absorption and the reduction of the ef-
fective nonlinear index at the third-harmonic frequeriay
nearly 75% reduction im, when7=0.5fs compared to the

FIG. 2. Theoretical spectrum of the nonlinear electronic suscep- _ . -
L e (3) Forefizal SPEctrim o e Nominear Secironic SUSCePy,stantaneous capdue to the finite electronic relaxation on
tibility x'*). Thick (fine) curves correspond to a relaxation time

=0.1 (0.5) fs. Symmetric bell shaped spectra are for the real part otlhe SL.Jb'fS time scale. The ;Iopg of abgorptlpn curves at
5((3)(w) (related to the nonlinear part of the index of refracjion =wo is equal to the relaxatpn time. Th'Ck (fing) curves
Antisymmetric spectra are for the imaginary partigP(w) (re- ~ correspond tar=0.1(0.5) fs. Figure 3 displays snapshots at
lated to the nonlinear absorptipiWe have superimposed the initial X=2-5to and &ty of the electric optical cycle for an ideal

1 . - : 1
x=2.5ct0
0.5 0.5¢
MmO m 0
-05 -0.5
-1 - : - 1
1.5 2 2.5 3 3.5
t/t0
0.15 T g 0.15
x=2.5ct0
0.1 0.1}
53] m
0.05¢ 0.057¢
0 0

FIG. 3. Evolution of an initial sech of duration,=8.8fs (,=5 fs), vacuum carrier wavelengtty=1.24um (7,/Tq~2) in an ideal
nonlinear dispersionless medium. Thitfine) optical cycles correspond to a relaxation time7ef0.1 (0.5) fs. Snapshots are takenxat
=2.5cty; andx=5ct,. Bottom figures are the corresponding spectra.
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1 1 T
x=2.5ct0 x=50t0
0.5} ] 0.5t
m 0 4R 0
-0.5} -0.5
-1 : -1 :
2.5 3.5 4.5 6.5 7.5
t/t0 t/t0
0.15 T T T 0.15 T T T 0.15
x=2.5ct0 x=50t0 x=7A5ct0
0.1 1 0.1t 0.1t
m m 4]
0.05¢1 1 0.05¢ 0.05f
0 : 0 0 Y
1 3 5 7 1 1 3 5 7
o/ /0

FIG. 4. Evolution of an initial sech pulse of duratiep=8.8fs, ¢,=>5 fs), vacuum carrier wavelengity=1.24um (7,/To~2) in bulk
fused silica(material parameters given in Fig. 1 with a GVD of 2.83/km. All plots are for an instantaneous nonlinear response. Snapshots
are taken ak/(cty)=2.5, 5, and 7.5 showing the shocks on the modulation cycle.

tance for an infinitely fast response of the nonlinear polarization, a sharp jump on the optical cycle occurs

tion is xg~1.5%t;. Numerical results indicate clearly that ~1.5cty and our numerical algorithm breaks down at larger
the finite relaxation time of the nonlinear electronic responselistances in that case. Dispersion prevents the development
(sub-fs time scale(i) slows down the steepening rate of the of an infinitely sharp jump and hence limits the frequency
optical cycle,(ii) does not limit the generation of strongly spectrum of the harmonics generated. Figure 4 shows the
phase matched optical harmonics and consequently the deptical cycle near the zero-dispersion point of bulk fused
velopment of infinitely sharp edges on the the optical cyclesilica for a zero-relaxation time limit. Note that the third-
producing its breaking when linear dispersion is not in-harmonic peak is nearly as strong as in the dispersionless,
cluded. Even for a very fast relaxation of 0.1 fs, shocks ormon-zero-relaxation time limit, but the higher harmonics are
the optical cycle only appear for=2.5ct,, and whenr not phase matched and much weaker. At7.5ct,
=0.5fs afterx=5ct,. Sinces’(E)<0 high intensity parts ~0.9L,_ ~0.26xg", the instantaneous nonlinearitiself-

of the optical cycle propagate slower than low intensity onesphase modulationleads to sprectral broadening and modu-
The finite relaxation time of the electronic nonlinearity doeslation, which indicates the development of steepening on the
not limit the generation of phase-matched harmonics angulse envelope. Finally, in Fig. 5, the effect of a finite relax-
therefore steepening on the optical cycle when dispersioation time is taken into account. For a relaxation time equal
and losses are neglected. Equal steepening on both the fraiat 7=0.1fs, a reduction in the production of harmonics of
and back edges of the modulation cycle is observed. In the-15% is observed compared to the zero-relaxation time
limit of an instantaneous intensity dependent index of refraclimit. When 7=0.5fs, a reduction of nearly-40% is ob-
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1
x=2.50t0 x=5ct0
05t 0.5
) oo
-0.5 -0.5
-1 - -1 .
2.5 35 4.5 6.5 7.5
t/t0 t/to
0.15 T 0.15 0.15
x=2.5ct0 x=5ct0 x=7.5ct0
0.1} 0.1} n 0.1}
o m
0.05¢ 0.05¢ 0.05¢
0 N N M 0 N N L ) 0 . N )
1 3 5 7 1 3 5 7 1 3 5 7
w/u)o 03/030 m/m0

FIG. 5. Evolution of an initial sech pulse of duratiep=8.8fs ({,=5 fs), vaccum carrier wavelenghty=1.24um (7,/Ty~2) in bulk
fused silica(material parameters are given in Fig. 1 with a GVD of 2.83kwa. Thick (fine) optical cycles correspond to a relaxation time
of 7=0.1 (0.5) fs. Snapshots are takenxafcty) =2.5, 5, and 7.5 showing the shocks on the modulation cycle.

served. Relaxation on the sub-fs time scale can thus marlpersion region of a third-order triple-resonance Lorentz
edly increase the thickness of the shoflexluces the steep- transparent medium. For illustrative purposes we have cho-
nesg on the optical cycle in dispersive media. Note thesen fused silica (Si§) as the host material due to its consid-
absence of broadening and modulation of the harmonic speerable importance in optical communications and good dis-
trum in contrast to the Inflnltely fast electronic reSponsepersive properties around the Zero_dispersion point_
limit. Formation of electromagnetic shocks on the modulation
cycle, directly related to the generation of optical harmonics,
has been proven, as conjectured by Rdgd) in 1965, and
recently reconsidered in RéfL7] for a single-resonance Lor-

In conclusions, using the FDTD method, recently appliedentz medium with instantaneous nonlinear response. Numeri-
to the field of nonlinear optickl3], from the full Maxwell's  cal results indicate that the finite relaxation time of the non-
equations we have illustrated the effects of a finite nonlinealinear electronic respongsub-fs time scale(i) slows down
electronic response timgub-fs time scaleon the formation the steepening rate of the optical cydiie) does not limit the
of electromagnetic shocks on the optical optical of a subgeneration of strongly phase matched optical harmonics and
10-fs two-cycle ultrashort pulse linearly polarized with a car-consequently the development of infinitely sharp edges on
rier wavelength of\y=1.24um traveling in the normal dis- the the optical cycle producing its breaking when linear dis-

IV. CONCLUSIONS
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