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Electromagnetic shocks on the optical cycle of ultrashort pulses in triple-resonance Lorentz
dielectric media with subfemtosecond nonlinear electronic Debye relaxation

L. Gilles,* J. V. Moloney,† and L. Vázquez
Escuela Superior de Informa´tica, Departamento de Matema´tica Aplicada, Universidad Complutense, E-28040 Madrid, Spain

~Received 8 February 1999!

The dynamical evolution of an intense ultrashort sub-10-fs two-cycle optical pulse is considered as it
propagates through a transparent third-order dielectric medium characterized by three resonance lines and a
finite sub-fs relaxation time of the electronic nonlinearity. Numerical integration of the full Maxwell’s equa-
tions incorporating triple-resonance Lorentz linear dispersion and Debye nonlinear dispersion, for a linearly
polarized electromagnetic pulse centered atl051.24mm in the normal dispersion region near the zero dis-
persion wavelength, shows the formation ofshocks occurring on the optical cycledue to the generation of
optical harmonics. The finite relaxation time of the nonlinear electronic response~sub-fs time scale! ~i! slows
down the steepening rate of the optical cycle;~ii ! does not limit the generation of strongly phase matched
optical harmonics, and consequently the development of infinitely sharp edges on the optical cycle producing
its breaking when linear dispersion is not included;~iii ! reduces the production of phase matched harmonics
and consequently the sharpening of the jumps when dispersion is present, compared to the case of an instan-
taneous nonlinear response; and~iv! reduces the harmonic spectrum spreading and modulation at later times on
the appearance of self-steepening of the electric field envelope.@S1063-651X~99!13107-6#

PACS number~s!: 42.65.Ky
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I. INTRODUCTION

Advances in ultrashort pulse laser technology have m
possible the generation of light pulses carrying a substan
part of their energy in only a few optical cycles@1,2#. Elec-
tromagnetic energy compressed in brief time intervals p
mits one to achieve extremely high peak powers. Cohe
light pulses with multiterrawatt peak power of energy at t
joule level are now available, opening new exciting oppor
nities in the research of high field nonlinear phenome
They may be used in time-resolved spectroscopic techniq
to study transient chemical processes on the fs time sc
e.g., dissociation, or for quantum control of chemical bon
ing @3#. Ultrashort pulses could also find wide applications
imaging, medical IR tomography@4#.
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Recently, the concept of decomposing the wave pac
into a carrier wave and an envelope has been shown to
legitimate down to the single-cycle@full width at intensity
half maximum,~FWHM!# regime and a fundamental three
dimensional~3D! envelope propagation equation based
this framework has been derived by Brabec and Krausz~BK!
@5#. In this framework, not only the envelope phase but a
the carrier phasemust not vary significantly as the puls
covers a distance equal to the carrier wavelength@the so
called slowly evolving wave approximation#. On the other
hand, it does not impose a limitation on the pulse width.
the specific case of 1D propagation~i.e., when diffraction
may be discarded!, the BK equation reduces to a generaliz
nonlinear Schro¨dinger equation derived by Blow and Woo
@6#, which may be written as
i
]A

]x
1 ib1

]A

]t
1L̂A1gS 11

i

v0

]

]t D FAE
2`

t

x~3!~ t2t1!uA~x,t1!u2dt1G50, ~1!
al
where the linear propagation operatorL̂ describing the linear
losses and higher-order dispersion effects is given by

L̂5 i
a0

2
2

a1

2

]

]t
1 (

m52

`
bm1~ i /2!am

m! S i
]

]t D
m

, ~2!

*Electronic address: fitelz2@sis.ucm.es
†Present address: Arizona Center for Mathematical Scien

Department of Mathematics, University of Arizona, Tucso
AZ 85721.
with

bm5Re~]mk/]vm!v0
, am52 Im~]mk/]vm!v0

, ~3!

and

g5
n2v0

c
. ~4!

Far from resonances~parametric processes, i.e., the initi
and final quantum states of the medium are identical!, am
50 (m50,1,2,3,...). Near resonances~nonparametric pro-

s,
,
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1052 PRE 60L. GILLES, J. V. MOLONEY, AND L. VÁZQUEZ
cesses, i.e., population transfer between energy levels!, am

Þ0. The operator@11( i /v0)(]/]t)# in Eq. ~1! gives rise to
the envelopeshock ~self-steepening!, a nonlinear higher-
order effect resulting from the intensity dependence of
group velocity, while the memory integral describes the
layed intensity response. Two different types of physi
mechanisms contribute to the nonlinear third-order elec
susceptibility far from resonance and contribute additively
x (3) @7#. An electronic contribution, nearly instantaneous~t
;0.1– 0.5 fs, wheret is the relaxation time! arising from the
electronic response to the applied electric field against
heavy nuclei considered fixed at an average position.
second, nuclear contribution~Raman self-scattering!, arises
from the electric field induced changes in the internal nucl
vibrations on a much longer time scale~;100 fs!, and are
usually temperature dependent.

Raman self-scattering produces in the context of opt
solitons a continuous downshift~redshift! of the soliton car-
rier frequency, a phenomenon know as soliton self-freque
shift @8#, and consequently, in the anomalous dispersion
gime, a continuous deceleration of the pulse. Since its
perimental discovery @9#, numerical and experimenta
@10,11# investigations of higher-order nonlinear effects r
sulting from the finite response time of the Raman non
earity have been carried out extensively because of their
damental as well as technological importance.

In this paper, numerical integration of the full Maxwell
equations for linearly polarized fields in one space dimens
using the finite-difference time-domain~FDTD! method
@12,13# is performed to investigate the effects of thefinite
nonlinear sub-fs electronic relaxationon the formation and
dynamical evolution ofshocks on the optical cycleof a sub-
10-fs pulse containing only two oscillation cycles~FWHM!
traveling in the normal dispersion region of the host mater
These electromagnetic shocks in the optical range occur
to the generation of optical harmonics, the time~distance! of
shock formation being directly related to the third harmo
period ~wavelength! in the instantaneous nonlinear respon
limit.

The possibility of observing self-steepening of optic
pulses and the formation of shocks on theenvelopehas been
extensively discussed@1#. Raman-induced optical shocks an
kink solitons representing shock fronts propagating und
torded inside optical fibers have also been predicted@14# in
both the anomalous and normal dispersion regimes, altho
they are unstable because of the inherent modulation in
bility of the cw background. Stable dark shock waves
dissipative Schro¨dinger systems have also been demo
strated@15#.

In contrast with the former envelope shock phenome
the formation of shocks occurring on the optical carrier wa
has received little attention. Electromagnetic shocks~discon-
tinuity of the electric and magnetic fields! and shock wave
trains of intense linearly polarized radiation were conjectu
theoretically in 1965 by Rosen@16# who emphasized the
rigorous correspondence between the theory of electrom
netic shocks and that of large amplitude 1D pressure wa
in solids. Recently, the authors of Ref.@17# discussed carrie
shocking for a single-resonance Lorentz medium with inst
taneous nonlinear response. The aim of this paper is to
eralize their analysis to the more physically realistic case
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multiple-resonance Lorentz transparent medium, and to a
lyze the influence of the delayed sub-fs nonlinear electro
response on the generation of optical harmonics and th
fore on the shocks occurring on the optical cycle. Althou
the response of nonlinearities in electronic polarization
very rapid, relaxation should be taken into account for
trashort pulses containing only a few cycles. Shocks on
optical cycle cannot easily be developed in real media
cause of group velocity dispersion~GVD!. Phase velocity
mismatch leads to the separation of the optical harmon
from the main pulse traveling at a different group veloci
and hence limits the steepening on the optical cycle. In
ferometric fringe autocorrelation techniques may provide
rect measurement of the optical cycle@18#, and thus carrier
shock formation. Good candidate materials to observe ca
shocks should have a large nonlinear index of refractionn2
and a broad spectral region of small dispersion where
phase to group velocityvp /vg is close to unity. For illustra-
tive purposes we have chosen fused silica (SiO2) as disper-
sive nonlinear dielectric material due to its considerable
portance in optical communications and good dispers
properties around the zero dispersion pointlZDP51.27mm.
Maxwell’s equations were solved for the evolution of an in
tial hyperbolic secant electric field envelope of durati
equal totp58.8 fs ~FWHM! „time constantt05tp /@2 ln(1
1&)#55 fs…, and a peak intensity equal to the estimat
silica damage threshold intensity in the sub-10-fs regimeI 0
550 TW/cm2. Fused silica is characterized by three abso
tion bands~two bands in the vacuum UV and one band in t
middle IR! and a nonlinear index change at the peak of
pulsedn5n2I 0;1.5%. The index of refraction is given b
n5n01dn, anddn/n0;1% can be obtained. Far from thes
three resonances, bulk fused silica is well approximated
the Sellmeier dispersion relation@19# covering both normal
and anomalous dispersion regimes. At the pulse ce
vacuum wavelengthl051.24mm ~a spectral FWHM of
Dl;200 nm! ~v051520 THz and Dv;224 THz!, the
second-order~GVD! is only k0952.83 ps2/km.

To minimize the effects of dispersion, known to play
crucial role in shock formation, leading to shock dissipati
@1#, carrier shock wave is best evidenced close to the z
dispersion wavelength, where the phase and group velo
mismatch is minimum. At the pulse center wavelengthl0
51.24mm, the phase-group velocity ratiovp /vg;1. In this
small dispersion limit, part of the third-harmonic pulse ge
erated by the Kerr nonlinearity copropagates with the fun
mental and is thus phase matched. For the chosen pulse
rameters the dispersion lengthLD

(2)5tp
2/k09;2.7 cm, which is

much greater than the nonlinear length scaleLNL51/(gI 0)
5c/(v0n2I 0)5l0 /(2pn2I 0);10.6l0;8.7ct0 , and hence
shocks on the optical cycle can occur over propagation
tances of a few micrometers.

II. MODEL SYSTEM

Maxwell’s equations for the electric and magnetic fie
quantitiesE andH in a nonmagnetic dielectric medium wit
no free charges are

“3E52m0]H/]t,

“3H5]D/]t. ~5!
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The material linear and nonlinear responses are inclu
through the constitutive relationD5e0@E1Ftot#, where
Ftot5F(1)1F(3), is the total induced electric macroscop
polarization, consisting of linear and nonlinear parts. T
triple-resonance Lorentz oscillator is represented by the c
volution integral

F~1!~ t !5(
j 51

3

Fj
~1!~ t !5E

2`

t

x~1!~ t2t1!E~ t1!dt1 , ~6!

with the linear susceptibility given by

x~1!~ t !5(
j 51

3

x j
~1!~ t !,

~7!

x j
~1!~ t !5

b jv j
2

V j
exp~2g j t !sin~V j t !Q~ t !,

whereV j5Av j
22g j

2. Here v j is the undamped resonanc
frequency of thej th resonance line~j 51, 2, and 3!, b j is the
strength of the resonance, andg j is the phenomenologica
damping constant. For simplicity, a centrosymmetric and i
tropic material has been assumed, so that the different
ceptibility tensors are scalar quantities, i.e.,x (1)5xyy

(1)

5xzz
(1) . Relaxation of the nonlinear response of the medi

is taken into account phenomenologically through a De
model

F~3!~ t !5aQ~ t !E~ t !,

Q~ t !5E
2`

t

x~3!~ t2t1!zuE~ t1!uz2dt1 ,

~8!

x~3!~ t !5
1

t
exp~2t/t!,

E
2`

`

x~3!~ t !dt51,

wherea is the third-order nonlinear coupling constant. W
have also assumed thatx (3)5xyyyy

(3) 5xzzzz
(3) , and that the

second-order susceptibility tensorx (2) is identically zero
@20#. As a consequence of isotropy, the electric induct
field D and the electric fieldE are parallel. The third-orde
nonlinear polarization reduces to the instantaneous inten
dependent Kerr response in the limit of infinitely fast r
sponse (t→0).

We restrict our attention to electromagnetic plane wa
linearly polarized propagating along thex axis, in which case
Maxwell’s equations~5! are

]

]t
H5

1

m0

]

]x
E,

]

]t
D5

]

]x
H, ~9!

D5e0@E1F~1!1F~3!#,
d

e
n-

-
s-

e

n

y-

s

whereH5Hy , E5Ez , D5Dz . Decomposed into envelop
and carrier waves, the electromagnetic fields take the fo

F E~x,t !
H~x,t !
D~x,t !

G5
1

2 F E0q~x,t !
H0h~x,t !
D0d~x,t !

Gexp@ i ~k0x2v0t !#1C.c.

~10!

In terms of the temporal Fourier transform,

E~ t !5
1

2p E
2`

`

Ê~v!exp~ ivt !dv,

~11!

Ê~v!5E
2`

`

E~ t !exp~2 ivt !dt,

the medium polarizations are written as

F̂~1!~v!5x̂~1!~v!Ê~v!,

x̂~1!5(
j 51

3 b jv j
2

v j
22v222ig jv

,

F̂~3!~v!5aE
2`

`

Q̂~v2v0!Ê~v0!dv0 ,

Q̂~v2v0!5x̂~3!~v2v0!E
2`

`

Ê~V1v2v0!

–Ê* ~V2v1v0!dV, ~12!

x̂~3!~v2v0!5
12 i ~v2v0!t

11~v2v0!2t2 . ~13!

In the time domain, Eqs.~9! are equivalently expressed i
the form of a wave equation

]2

]t2 E2c2
]2

]x2 E1
]2

]t2 F50. ~14!

In Fourier space, neglecting the third harmonics~rotating
wave approximation!, the following wave equation for the
slowly varying envelopeq̂(x,v2v0) can be derived:

]2

]x2 q̂~v2v0!1e~v!
v2

c2 q̂~v2v0!50, ~15!

where the dielectric function

e~v!511x̂~1!~v!1 3
4 x̂~3!~v2v0!aE0

2uqu2. ~16!

The dispersion relation takes the form

e~v!v2/c25k2. ~17!

Its real and imaginary parts are related to the refractive in
n(v) and the absorption loss coefficienta~v! through the
relationship

e~v!5Fn~v!1 ia~v!
c

2vG2

. ~18!
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Therefore,

n~v!5n0~v!1n2E0
2uqu2,

~19!
a~v!5a0~v!1a2~v2v0!E0

2uqu2,

where the linear and nonlinear induced refractive indices
given by

n0~v!5Re@A11x̂~1!~v!#,
~20!

n25
3ax̂~3!~0!

8n0~v0!
5

3a

8n0
,

while the single- and two-photon absorption coefficients

a0~v!5
v0

n0~v0!c
Im@ x̂~1!~v!#,

~21!

a2~v2v0!5
v0

n0~v0!c
Im@ x̂~3!~v2v0!#.

The triple-resonance Lorentz linear dipole oscillato
obey a set of three coupled harmonic ordinary differen
equations~ODE’s!,

]2

]t2 F j12g j

]

]t
F j1v j

2F j5b jv j
2E, ~22!

and the Debye electronic relaxation satisfies the follow
ODE:

]

]t
Q1

1

t
Q5

1

t
E2. ~23!

The ODE’s ~22! and ~23! are coupled simultaneously t
Maxwell’s partial differential equations~PDE’s! ~9!, and the
full system is solved using a standard FDTD scheme ba
on the Yee method@13#. The numerical dispersion inheren
in these methods has been analyzed in detail@21#, and we
chose our discretization accordingly.

III. SHOCKS ON THE OPTICAL CYCLE
OF ULTRASHORT PULSES

Before considering the numerical solution of the set
equations~9!, ~22!, and~23!, it is instructive to consider the
dispersionless case by settingF (1)50 and the instantaneou
nonlinear response limitt→0. Equation~14! then becomes

]2E

]t2 2c2
]2E

]x2 1a
]2E3

]t2 50. ~24!

In close connection to Eq.~24! are the one-way wave equa
tions

s~E!
]E

]t
1

]E

]x
50,

~25!
s~E!52~1/c!A113aE2.
re

e

l

g

ed

f

This last nonlinear hyperbolic equation can be solved a
lytically by the method of the characteristics and adm
shock solutions@22#. First, note that Eqs.~25! satisfy the 1D
conservation laws

]r~E!

]t
1

]E

]x
50,

r~E!5E s~E!dE, ~26!

subject to the initial data

E~x50,t̃ !5 f ~ t̃ ! ~27!

~throughout this paper we use the expression ‘‘initially’’
this sense, i.e., the condition atx50!. Recognizing that the
differentiation in Eqs.~25! may be written as

d

dx
5

dt

dx

]

]t
1

]

]x
, ~28!

which is a directional derivative along the characteris
curvesC given by integrating

C:
dt

dx
5s~E!, ~29!

which enables Eqs.~25! to be written

dE

dx
50 along the characteristicsC. ~30!

Thus characteristics transport along them constant value
the solutionE and they are nonparallel straight lines@s(E)
Þconst# of slope given by Eq.~29!. It follows that different
elements of the initial wave~27! will propagate at different
speeds, so that the wave will reshape with propagation
tancex. Whens8(E).0, higher values ofE propagate faster
than lower ones, while whens8(E),0 higher values ofE
propagate slower and the nonlinear distortion occurs tow
the trailing side of the wave. Fors8(E)50 ~i.e., the linear
case!, s is a constant, characteristics are parallel strai
lines, and the wave is translated without any change
shape. Nonuniqueness of the solution results when forx.0
the characteristics intersect. At some distance a discontin
or shock forms due to the crossing of two characterist
This crossing distance is found as follows. Consider t
characteristicsC1 and C2 , through the points~x50, t5 t̃ 1!

and ~x50, t5 t̃ 2!, respectively. They have the equations

C1 :t5 t̃ 11F~ t̃ 1!x,
~31!

C2 :t5 t̃ 21F~ t̃ 2!x,

where F( t̃ )5s„f ( t̃ )…. The characteristics that cross fir
must be initially adjacent so that we can take the limitt̃ 1

→ t̃ 2 to obtain
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xB5 lim
t̃ 1→ t̃ 2

t̃ 12 t̃ 2

F~ t̃ 2!2F~ t̃ 1!
5

21

F8~ t̃ B!
. ~32!

Therefore, the smallest breaking distance occurs on the c
acteristic passing through the point~x50, t̃ B! for which
F8( t̃ B) is most negative. The solution of Eqs.~25! can then
be written in implicit form~for the boundary condition of an
input pulse varying in time atx50! by the set of equations

E~x,t !5 f ~x50,t̃ !,
~33!

t̃ 5t2s„E~x50,t̃ !…,

or, equivalently,

E~x,t !5 f „t2s~E!x…5 f ~ t̃ !. ~34!

Differentiating Eq.~34! yields

]E

]t
~ t̃ !5 f 8~ t̃ !

] t̃

]t
5

f 8~ t̃ !

11F8~ t̃ !x
,

~35!

]E

]x
~ t̃ !5 f 8~ t̃ !

] t̃

]x
5

2 f 8~ t̃ !F~ t̃ !

11F8~ t̃ !x
.

Clearly, these derivatives become infinite at the shock lo
tion, i.e., whenF8 achieves its most negative value.

As illustrative example, we have chosen an initial hyp
bolic secant soliton pulse

E~x50,t !5E0 sech~ t/t0!cos~v0t !. ~36!

Inserting this initial condition into Eq.~32! yields

xB5~ct0!
2A11~3/2!aE0

2 sech2@T0 /~8t0!#

aE0
2 sech2@T0 /~8t0!#3$tanh@T0 /~8t0!#1v0t0%

,

~37!

.~ct0!
2A11~3/2!aE0

2

aE0
23v0t0

~T0<t0!

.
cT0

p3aE0
2 .

The shock distance is thus directly related to the freque
of the third-harmonic generated by the nonlinearity. In t
present caseaE0

250.06 ~which corresponds todn51.5%!,
tp /T052 ~two-cycle initial pulse!, yielding xB;1.53ct0 .
For physical reasons the electromagnetic fields must
single valued, therefore when breaking occurs Eqs.~25! must
cease to be a valid description of the electromagnetic sho
In fact, beforexB the pulse bandwidth will have becom
large enough that dispersion can no longer be neglected

To calculate the steepening of the pulseenvelope, Eq. ~1!
can be used in the dispersionless and instantaneous non
response limits, i.e.,

i
]A

]x
1 ib1

]A

]t
1gS 11

i

v0

]

]t D uAu2A50. ~38!
ar-

a-

-

y
e

e

s.

ear

Denotings5g/v05n2 /c andA5E0q exp„iw(x,t)…, we ob-
tain the following nonlinear hyperbolic equation for the re
amplitudeq in the group velocity frame of reference:

]q

]x
13sE0

2q2
]q

]t
50. ~39!

For q(x50,t)5sech(t/t0), we obtain the envelope shockin
distance

xB
env.

0.43ct0
n2E0

2 5
0.43ct0

dn
5

8n0

3aE0
2 0.43ct0 , ~40!

which is proportional to the pulse duration~expressed in
units of ct0!. For the initial condition~36!, the ratio of the
envelope-to-carrier shocking distance is given by

xB
env

xB
.2pn0S tp

T0
D , ~41!

where tp is the envelope FWHM. In our casedn50.015,
and we obtainxB

env;28.6ct0 (xB
env/xB;18.7). Figure 1

shows typical theoretical material chromatic dispersion
tained from the Sellmeier relation~12! valid far from the
resonances. For bulk fused silica the parameters are foun
be @19# b1;0.7, l1;0.068mm, T15l1 /c;0.22 fs,

FIG. 1. Bulk fused silica chromatic dispersion. The mater
parameters areb1;0.7, l1;0.068mm, T15l1 /c;0.22 fs, b2

;0.4, l2;0.116mm, T25l2 /c;0.39 fs, b3;0.9, l3;9.9mm,
and T35l3 /c;33 fs, wherel j52pc/v j . We have chosen long
resonance relaxation timesg j

2155 ms. The top picture shows the
group velocity together with the ratio phase-group velocity. Botto
picture displays group velocity dispersion~GVD! and third order
dispersion~TOD!. On both pictures we have superimposed the i
tial pulse spectrum for comparison.
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FIG. 2. Theoretical spectrum of the nonlinear electronic susc
tibility x̂ (3). Thick ~fine! curves correspond to a relaxation timet
50.1 (0.5) fs. Symmetric bell shaped spectra are for the real pa
x̂ (3)(v) ~related to the nonlinear part of the index of refractio!.
Antisymmetric spectra are for the imaginary part ofx̂ (3)(v) ~re-
lated to the nonlinear absorption!. We have superimposed the initia
pulse spectrum for comparison.
(v1 /v0;18.2), b2;0.4, l2;0.116mm, T25l2 /c
;0.39 fs, (v2 /v0;10.7), b3;0.9, l3;9.9mm, T3

5l3 /c;33 fs, and (v3 /v0;0.12), wherel j52pc/v j .
We have chosen long resonance relaxation timesg j

21

55 ms @g j t051029#. The three absorption bands of SiO2

are@v j ,v jA11b j #. The zero dispersion point~at the inflec-
tion point in the index of refraction! lZDP;1.27mm lies be-
tween l2 and l3 /A11b3. At the carrier vacuum wave
lengthl051.24mm GVD is only k(2);2.83 ps2/km. In Fig.
2, the spectrum of the electronic nonlinear susceptibility
displayed together with the initial pulse spectrum. We n
the strong nonlinear absorption and the reduction of the
fective nonlinear index at the third-harmonic frequency~a
nearly 75% reduction inn2 whent50.5 fs compared to the
instantaneous case! due to the finite electronic relaxation o
the sub-fs time scale. The slope of absorption curves av
5v0 is equal to the relaxation timet. Thick ~fine! curves
correspond tot50.1 ~0.5! fs. Figure 3 displays snapshots
x52.5ct0 and 5ct0 of the electric optical cycle for an idea
nonlinear dispersionless medium. Calculated shocking

p-

of
FIG. 3. Evolution of an initial sech of durationtp58.8 fs (t055 fs), vacuum carrier wavelengthl051.24mm (tp /T0;2) in an ideal
nonlinear dispersionless medium. Thick~fine! optical cycles correspond to a relaxation time oft50.1 (0.5) fs. Snapshots are taken atx
52.5ct0 andx55ct0 . Bottom figures are the corresponding spectra.



hots

PRE 60 1057ELECTROMAGNETIC SHOCKS ON THE OPTICAL CYCLE . . .
FIG. 4. Evolution of an initial sech pulse of durationtp58.8 fs, (t055 fs), vacuum carrier wavelengthl051.24mm (tp /T0;2) in bulk
fused silica~material parameters given in Fig. 1 with a GVD of 2.83 ps2/km. All plots are for an instantaneous nonlinear response. Snaps
are taken atx/(ct0)52.5, 5, and 7.5 showing the shocks on the modulation cycle.
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tance for an infinitely fast response of the nonlinear polari
tion is xB;1.53ct0 . Numerical results indicate clearly tha
the finite relaxation time of the nonlinear electronic respo
~sub-fs time scale! ~i! slows down the steepening rate of th
optical cycle,~ii ! does not limit the generation of strong
phase matched optical harmonics and consequently the
velopment of infinitely sharp edges on the the optical cy
producing its breaking when linear dispersion is not
cluded. Even for a very fast relaxation of 0.1 fs, shocks
the optical cycle only appear forx>2.5ct0 , and whent
50.5 fs afterx>5ct0 . Sinces8(E),0 high intensity parts
of the optical cycle propagate slower than low intensity on
The finite relaxation time of the electronic nonlinearity do
not limit the generation of phase-matched harmonics
therefore steepening on the optical cycle when dispers
and losses are neglected. Equal steepening on both the
and back edges of the modulation cycle is observed. In
limit of an instantaneous intensity dependent index of refr
-

e

e-
e
-
n

s.

d
n

ont
e
-

tion, a sharp jump on the optical cycle occurs atxB
;1.5ct0 and our numerical algorithm breaks down at larg
distances in that case. Dispersion prevents the developm
of an infinitely sharp jump and hence limits the frequen
spectrum of the harmonics generated. Figure 4 shows
optical cycle near the zero-dispersion point of bulk fus
silica for a zero-relaxation time limit. Note that the third
harmonic peak is nearly as strong as in the dispersionl
non-zero-relaxation time limit, but the higher harmonics a
not phase matched and much weaker. Atx57.5ct0
;0.9LNL;0.26xB

env, the instantaneous nonlinearity~self-
phase modulation! leads to sprectral broadening and mod
lation, which indicates the development of steepening on
pulse envelope. Finally, in Fig. 5, the effect of a finite rela
ation time is taken into account. For a relaxation time eq
to t50.1 fs, a reduction in the production of harmonics
;15% is observed compared to the zero-relaxation ti
limit. When t50.5 fs, a reduction of nearly;40% is ob-
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FIG. 5. Evolution of an initial sech pulse of durationtp58.8 fs (t055 fs), vaccum carrier wavelengthl051.24mm (tp /T0;2) in bulk
fused silica~material parameters are given in Fig. 1 with a GVD of 2.83 ps2/km. Thick ~fine! optical cycles correspond to a relaxation tim
of t50.1 (0.5) fs. Snapshots are taken atx/(ct0)52.5, 5, and 7.5 showing the shocks on the modulation cycle.
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served. Relaxation on the sub-fs time scale can thus m
edly increase the thickness of the shocks~reduces the steep
ness! on the optical cycle in dispersive media. Note t
absence of broadening and modulation of the harmonic s
trum in contrast to the infinitely fast electronic respon
limit.

IV. CONCLUSIONS

In conclusions, using the FDTD method, recently appl
to the field of nonlinear optics@13#, from the full Maxwell’s
equations we have illustrated the effects of a finite nonlin
electronic response time~sub-fs time scale! on the formation
of electromagnetic shocks on the optical optical of a s
10-fs two-cycle ultrashort pulse linearly polarized with a c
rier wavelength ofl051.24mm traveling in the normal dis-
k-

c-

d

r

-
-

persion region of a third-order triple-resonance Lore
transparent medium. For illustrative purposes we have c
sen fused silica (SiO2) as the host material due to its consi
erable importance in optical communications and good d
persive properties around the zero-dispersion po
Formation of electromagnetic shocks on the modulat
cycle, directly related to the generation of optical harmoni
has been proven, as conjectured by Rosen@16# in 1965, and
recently reconsidered in Ref.@17# for a single-resonance Lor
entz medium with instantaneous nonlinear response. Num
cal results indicate that the finite relaxation time of the no
linear electronic response~sub-fs time scale! ~i! slows down
the steepening rate of the optical cycle;~ii ! does not limit the
generation of strongly phase matched optical harmonics
consequently the development of infinitely sharp edges
the the optical cycle producing its breaking when linear d
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persion is not included;~iii ! reduces the production of phas
matched harmonics and consequently the sharpening o
jumps when dispersion is present, compared to the case
instantaneous nonlinear response; and~iv! reduces the har
monic spectrum spreading and modulation at later times
the appearance of self-steepening of the electric field en
lope. Interferometric fringe autocorrelation techniques m
provide direct measurement of the optical cycle@18# and thus
carrier shock formation.
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